References
Bischl, Bernd, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus, Giuseppe Casalicchio, and Zachary M. Jones. 2016. “Mlr: Machine Learning in R.” Journal of Machine Learning Research 17 (170): 1–5. http://jmlr.org/papers/v17/15-066.html.
CambridgeUniversity. 2014. “Google awards $ 750.000 for The Automatic Statistician.” 2014. http://mlg.eng.cam.ac.uk/?p=1578.
Eiben, Agoston E, James E Smith, and others. 2003. Introduction to Evolutionary Computing. Vol. 53. Springer.
Feurer, Matthias, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. 2015. “Efficient and Robust Automated Machine Learning.” In Advances in Neural Information Processing Systems, 2962–70.
Hutter, Frank, Lars Kotthoff, and Joaquin Vanschoren, eds. 2018. Automatic Machine Learning: Methods, Systems, Challenges. Springer.
Hwang, Yunseong, Anh Tong, and Jaesik Choi. 2015. “The Automatic Statistician: A Relational Perspective.” arXiv:1511.08343 [cs.LG].
Lloyd, James Robert, David Duvenaud, Roger Grosse, Joshua Tenenbaum, and Zoubin Ghahramani. 2014. “Automatic Construction and Natural-Language Description of Nonparametric Regression Models.” In Twenty-Eighth Aaai Conference on Artificial Intelligence.
Miller, Tim. 2019. “Explanation in Artificial Intelligence: Insights from the Social Sciences.” Artif. Intell. 267: 1–38.
Molnar, Christoph. 2019. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable.
Mrkšić, Nikola. 2014. “Kernel Structure Discovery for Gaussian Process Classification.” Master’s thesis, Computer Laboratory, University of Cambridge.
Olson, Randal S., and Jason H. Moore. 2018. “TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning.” In, edited by Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren, 163–73. Springer.
Steinruecken, Smith, Janz, Lloyd, and Ghahramani. 2019. “The Automatic Statistician.” In Automated Machine Learning. Springer.